
 Implementing basic programming structures  107

CPI R17,0

BREQ iso

BRLT mik

LDI R18,3

JMP cont

iso:

LDI R18,1

JMP cont

mik:

LDI R18,2

cont:

TRUE
R17=0

Compare R17

with 0 (zero)

Figure 4.8a Execution flow for R17=0

On the other hand, if the content of register R17 is less than zero (fig. 4.8b), then the

condition of the BREQ is FALSE and the execution flow is not driven to the label iso.

Thus, the instruction BRLT mik is executed. Now, this condition is TRUE (R17<0)

and the execution flow continues from the point mik where the value 2 is stored in

R18 (LDI R18,2). After the execution of this instruction, the execution flow

continues from the point cont which follows (is a wrong programming practice the

insertion of a JMP instruction for going to the cont point because the execution flow

is driven always there).

FALSE
R17 0

CPI R17,0

BREQ iso

BRLT mik

LDI R18,3

JMP cont

iso:

LDI R18,1

JMP cont

mik:

LDI R18,2

cont:

Compare R17

with 0 (zero)

TRUE
R17<0

Figure 4.8b Execution flow for R17<0

Finally, if the content of register R17 is positive (R18>0), then the conditions of the

instructions BREQ and BRLT are FALSE. Thus, the execution flow is not driven to the

points iso or mik and the instruction LDI R18,3 is executed. Initially, the condition

for equivalence (BREQ) is checked which is FALSE. Thus, the next condition is

checked which is also FALSE. As a result, the value 3 is stored in the register R18.

After the value storage, the instruction JMP cont is executed for bypassing the next

code sections which belong to different cases (R17=0, R17<0), as shown in figure

4.8c.

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

114  CHAPTER 4

x=15;

do

{

x--;

}

while (x>0);

LDI R18,15

again:

DEC R18

BRNE again

Counter initialization

Restart point (label)

Main iteration section

Counter decrement

Condition check

If R18>0

C code Assembly code

Figure 4.13 C and Assembly

As shown in figure 4.13, the counter takes values in the range [15,0], while the loop

will be terminated when the counter content becomes zero (the Z bit of the SREG

will be activated). Figure 4.14 shows the corresponding flow chart diagram.

YES

(TRUE)
NO

(FALSE)

R18=15

Instructions

R18=R18-1

R18>0 ?

LDI R18,15

again:

;Instructions that

;will be repeated

DEC R18

BRNE again

If R18>0

Assembly code

again

Figure 4.14 Code and flow chart diagram

4.3.2 Iteration structure while-do

In this type of iteration, the condition check is performed at the beginning (before the

main iteration section). As a result, the instruction group inside the iteration, is never

executed if the condition is not TRUE at least once. The implementation of the above

structure is more complex as compared to the previous (do-while). Moreover, the

while-do structure can be implemented with two different ways.

Figure 4.15 shows the flow chart diagram, while the code 4.3 is the

implementation of the iteration structure where the execution flow is driven in the

main iteration section only if the condition check is TRUE. Otherwise, the iteration

is terminating with jumping to the label exit, where the condition check is

performed. When the condition check is FALSE, the execution flow is not driven to

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

 Implementing basic programming structures  143

80 80
Background=1 Background=0

Indicative operation of the

electronic traffic sign

14. In a tunnel of the national highway there are 3 locations of alarm activators

for the drivers and 3 locations with gas detectors. Moreover, there are 2 locations

of escape paths. Based on the tunnel management rules, in a case of emergency

(activated alarms), the closer escape path must be lighted with a proper sound

alarm for helping drivers and passengers to be driven at the emergency exit.

Alarm activator

Gas sensor (detector)

Escape location

A1

A2

A3

G1

G2

G3

E1

E2

The logic of the tunnel management system can be described as follows:

If G1=1 or A1=1 or A2=1, then E1=1 (0=no active, 1=active)

If G2=1 or G3=1 or A3=1, then E2=1 (0=no active, 1=active)

Of course, the activation of E1 and E2 may be happened at the same time. The gas

detection is performed by sensors, while the alarm can be activated by drivers using

a special red button. The buttons are install in a communication device which can be

used also by drivers in a case of emergency.

The register R16 represents at any time the status of the G1, G2, G3, A1, A2 and A3.

The above status is mapped on specific bits as follows:

R16 X X G3 G2 G1 A3 A2 A1

7 6 5 4 3 2 1 0

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

 Basic Programming of the Input/Output (I/O) Ports  149

Note

A main difference of the LED diode as compared to classic one, is that the

corresponding voltage drop across positive and negative pins is much greater. For a

red LED, this voltage is 1.8 to 2.0V. Thus, it is assumed that UD=2V, when a current

calculation takes place.

Figure 5.10a shows a LED diode in a simple electrical circuit. For the same circuit,

the voltage source can be replaced by a microcontroller pin (fig. 5.10b). Thus, the

LED can be controlled by the microcontroller based on the corresponding software.

It must be noticed that, due to the small LED resistance, an additional resistor must

be used for limiting the current. Otherwise, the LED and the microcontroller port can

be damaged.

R

150Ω UR

5V (HIGH)

GND

(a) (b)

UD

R

150Ω UR

AVR

PORT

5V (HIGH)

GND

UD

U=5V

Figure 5.10 LED control from a voltage source or from a microcontroller

The current of circuit 5.10 is:

𝐼 =
𝑈 − 𝑈𝐷

𝑅
=
5𝑉 − 2𝑉

150𝛺
=

3𝑉

150𝛺
= 0.02𝛢 = 20𝑚𝐴

Figure 5.11 shows how the LED can be lit by setting the microcontroller pin level

(e.g. PB0) to HIGH (5V) or LOW (0V).

R

150Ω UR

AVR

PB0

5V (HIGH)

R

150Ω UR

AVR

PB0

0V (LOW)

GND

+5V

(a) (b)

Figure 5.11 LED activation with a signal 5 or 0V

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

 Basic Programming of the Input/Output (I/O) Ports  153

microcontroller is achieved by register PORTx, assuming that all the pins of port B

have been set as outputs with the instructions LDI R16,0xFF and OUT DDRB,R16.
bit0bit7

PORTx

Register

Port x

WRITE

1 1 0 1 1 0 0 0

WRITE

1 1 0 1 1 0 0 0
Figure 5.16 Using the register PORTx

As shown in figure 5.16, anything loaded in PORTx, is appeared as voltage level to

the corresponding pins. The complete code for writing the binary number 11011000

in port B, is as follows:

Code 5.1

LDI R16,0xFF ;load 11111111 in R16

OUT DDRB,R16 ;set all the pins of port B, as outputs

LDI R16,0b11011000 ;load 11011000 in R16

OUT PORTB,R16 ;write the data in the pins of port B

Figure 5.17 shows the data direction set for the port B through register DDRB as well

as the pin voltage set (binary number 11011000) through register PORTB. This

operation is the same for all the AVR microcontrollers. In the same figure, the

pinout of the ATmega8515 and ATmega32 is used.

20

40

AVR

PB0

DDRB

bit 01

1

1

1

1

1

1

1 bit 7

output
output

PB1
PB2
PB3
PB4
PB5
PB6
PB7

21

output
output

output
output

output
output

20

40

AVR

PB0

PORTB

bit 00

0

1

1

0

1

0

1 bit 7

PB1
PB2
PB3
PB4
PB5
PB6
PB7

21

1
1
0
1
1
0
0
0

Figure 5.17 Write data bits in the output pins of port B (ATmega8515/ATmega32)

IN – Read from an I/O Register

For reading from an I/O register, the following instruction is used:

IN Rd,IOReg

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

170  CHAPTER 5

YES

(TRUE)

NO

(FALSE)

Button=0

LED=1

scan

Pin PB0 input

(button)

Pin PB1

output

(LED)

Is the button

Activated;

?

LED

Activation

LED

Deactivation

Figure 5.32 Flow chart

Of course, in such a case, a different

port could be used for different data

direction, but the current program

supports only the above operation (the

button is checked constantly for LED

activation).

The SBIS instruction checks the

input pin PB0. If this pin is activated

(PB0=1), then the next instruction is not

executed (the flow does not return to

button check) and the LED is activated

and deactivated for a moment. Using

this approach, the LED is only activated

while the button is pressed. After the

above LED operation, the execution

flow returns to the button check.

The execution flow returns also to button check while PB0=0 (checking with the

SBIS instruction). Figure 5.33 shows the execution flow based on the button state.

scan:

SBIS PINB,Button

RJMP scan

SBI PORTB,LED

CBI PORTB,LED

RJMP scan

+5V

R
Uout

Switch

(button)

open

AVR

PB0

X X X X X X X 0PB

PB0

Figure 5.33a Change execution flow based on pin status

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

182  CHAPTER 5

LABORATORY EXERCISE 2

Time Delay

GOAL

In this exercise a time delay will be developed and measured for controlling a

LED.

Step 1

Develop a program for inverting the LED status (on/off/on, etc) every 0.5 seconds.

The LED is connected at PD0 (pin 0 of port D). For the program operation a circuit

has to be implemented (see next figure). Initially, observe the program operation

on the LED state.

AVR PD0

Step 2

Fill the following signal attributes based on the expected measurements on pin

PD0.

T

T1 T2

T1 =

T2 =

T =

Frequency F =

Step 3

Connect one channel of the oscilloscope as described in the next figure. Set

properly the time base (Time/Div) and the voltage scale (Volts/Div) on the

oscilloscope in order to display the measured signal at the right size.

INTENSITYPOWER CH1/SEL CH2/SEL

CHANNEL1

INPUT

CHANNEL2

INPUT

Time/Div Volts/Div

OSCILLOSCOPE

AVR PD0

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

198  CHAPTER 6

Note

The SSD unit of common anode is the most popular circuit implementation due to the

fact that offers power independency using an external power supply. The goal of the

current application is to give two different solutions for using the SSD units (common

anode or common cathode) that may be chosen by the engineer.

In the circuit of figure 6.8b, each segment activation is performed with a logic signal

0 (LOW), and the power supply is based on an external source. For supporting the

above operation, the transistor BC557 (PNP type) is used instead of the BC547 (NPN

type).

AVR

BC547 BC547
470Ω470Ω

R=150-220Ω

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PD0

PD3

a
b
c
d
e
f
g

dp

a
b
c
d
e

f
g

dp

BC547
470Ω

a
b
c
d
e

f
g

dp

BC547
470Ω

a
b
c
d
e

f
g

dp

PD1

PD2

M3 M2 M1 M0

Figure 6.8a Circuit with four common cathode SSD units

AVR

BC557 BC557
470Ω470Ω

R=150-220Ω

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

a
b
c
d
e
f
g

dp

a
b
c
d
e

f
g

dp

BC557
470Ω

a
b
c
d
e

f
g

dp

BC557

470Ω

a
b
c
d
e

f
g

dp

M3 M2 M1 M0

+5V

PD0

PD1

PD2

PD3

Figure 6.8b Circuit with four common anode SSD units

Now, more pins of port D are used (fig. 6.8a,b). Table 6.3 shows the pin values (PD3

to PD0) in order to display the digit ‘1’ in all the SSD units (Μ3 to Μ0).

Table 6.3 SSD unit activation

PD3 PD2 PD1 PD0 Unit activation
1 0 0 0 Μ3
0 1 0 0 Μ2
0 0 1 0 Μ1
0 0 0 1 Μ0

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

Switch circuits for user input  235

R1 C2 SW6
R1 C3 SW7
R2 C0 SW8
R2 C1 SW9
R2 C2 SWA
R2 C3 SWB
R3 C0 SWC
R3 C1 SWD
R3 C2 SWE
R3 C3 SWF

Figure 7.2 shows the «active-electric path» based on the SW0 activation. Initially, the

desired line is activated (e.g. R0) and all the columns are scanned. Thus, by activating

the line R0 and button SW0, only the column C0 gives 5V signal. With the line-column

combination, the activated button is known. For finding any activated button, the lines

R0 to R3 are connected to output pins of the microcontroller, while the columns C0 to

C3 are connected to input pins of the microcontroller. In other words, when a line is

activated through a microcontroller pin (output), then the column signals (column

outputs) are read through the microcontroller pins (input).

R0

R R R R

R1

R2

R3

C0 C1 C2 C3

SW0 SW1 SW2 SW3

SW4 SW5 SW6 SW7

SW8 SW9 SWA SWB

SWC SWD SWE SWF

Figure 7.2 SW0 is activated

The following algorithm describes the scanning operation in a circuit with Ν lines

and M columns (NxM) for finding the pressed button.

BEGIN

For Α=1 to Ν (lines)

 {

 Line A activation

 For Β=1 to Μ (columns)

 {

 If column Β=active then

the button (Α,Β) is pressed,

perform the corresponding operations

 End-If

 }

 }

END

Active
column

Active
row

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

Switch circuits for user input  237

For verifying the keyboard operation as well as the corresponding code operation, the

SSD units will be used for displaying the keyboard symbols. Figure 7.5a shows the

full circuit which contains the input keyboard as well as the SSD units. Alternatively,

only one SSD unit can be directly used (fig. 7.5b). The display circuit is based on the

digital multiplexing of multiple SSD units. In this application, only the right side SSD

unit (Μ0) is used for displaying the symbols. Thus the other SSD units (Μ1 to Μ3)

will remain unconnected. This happens for showing the full circuit and the capability

to display more digits later by using more SSD units.

R0

R R R R

R1

R2

R3

C0 C1 C2 C3

SW0 SW1 SW2 SW3

SW4 SW5 SW6 SW7

SW8 SW9 SWA SWB

SWC SWD SWE SWF

AVR

BC547 BC547
470Ω470Ω

R=150Ω
PD0
PD1
PD2
PD3
PD4
PD5
PD6

PD7

a
b
c
d
e
f
g

dp

a
b
c
d
e

f
g

dp

BC547
470Ω

a
b
c
d
e

f
g

dp

BC547
470Ω

a
b
c
d
e

f
g

dp

M3 M2 M1 M0

PB0

PB1PB2PB3

PC0

PC1

PC2

PC3

Figure 7.5a Test circuit for the 4x4 keyboard

As shown in the circuit of figure 7.5a, only the control line for the last digit is used

(SSD unit M0), while the floating point led (dp) is also not used. Thus, the first seven

pins of the port D are used for the segments a,b,c,d,e,f and g, while the last pin is used

for controlling the SSD unit through the transistor. Due to the fact that the SSD unit

is always active, the pin PD7 will be always 1 (fig. 7.6). The same connection method

is also used in the circuit of figure 7.5b. Moreover, eight bits will be written to port

D and thus the corresponding hexadecimal numbers for every digit will be different.

Table 7.2 shows the hexadecimal numbers that correspond to the segments activation

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

Simulating Assembly source code in Atmel Studio 7  263

Figure A.11 Selecting the simulator tool

Now the execution process can be started. Press

successively the play button in order to view the

corresponding results in the microcontroller. Figure A.12

shows the information which is displayed during the step by

step execution. From the menu Debug, select Windows to

activate the information window type.

Figure A.12 Simulation process

STEP 10

Run the
simulation

step by step

Selecting

Simulator

Selecting registers,

ports, etc.

Port status

Source code

Registers content

Memory

contents Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

