
2 CHAPTER 1

what is a register?

Think a register as a variable which is implemented with a specific digital

circuit inside the microprocessor. Each microprocessor has its own registers,

with specific names and capacity. For developing an Assembly program and

for exchanging data with the microprocessor, the available registers are used.

Figure 1.1 MIPS 32bit Registers

For using registers 0 to 31, the corresponding unique number or symbolic

name can be used. Practically, all the programmers prefer the symbolic names.

Moreover, inside programs the prefix ‘$’ is used on the left of a register

number or symbolic name. As an example, the register v0 can be used by

writing $v0 or $2.

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

24 CHAPTER 1

Example 1

Assume that a program checks the content of $t1. If $t1=10, then the value 4

will be assigned to $t2, otherwise the value 3.

beq

$t1,10,timi4

li $t2,3

j L2

timi4:

li $t2,4

L2:

Figure 1.9 Checking a register content and

branching

As shown in figure 1.9, a comparison of $t1 with 10 is performed. If the

content of $t1 is equal to 10 (TRUE case), then a branch to label timi4 is

performed and the execution flow is continued from that point (the number 4

is assigned to $t2). Otherwise, (FALSE case), no branch is performed to label

timi4 and the execution flow is continued from the next instruction which

assigns the number 3 to $t2. The instruction j L2 drives directly the control

flow to label L2 in order to avoid the code section which starts from the label

timi4 and belongs to the TRUE case. Figure 1.10 shows the flow chart for

the above code.

Figure 1.10 Flow chart diagram (controlling the execution flow)

Example 2

A program checks if $t1=0 and $t2>=5. If this is TRUE, then the assignment

$t0=1 is performed, otherwise nothing (execution flow continues from the

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

100 CHAPTER 2

For A=1 to Ν (where Ν is the number of lines that have be chosen by the user)

 For Β=1 to Α (where Β is the numbers of asterisks per line)

The following flow chart (figure 2.10) shows the implementation logic of the

iteration loops as well as the logic of the asterisks display.

Code development
.text 0x00400000

 li $v0,4

 la $a0,dose

 syscall

 li $v0,5

 syscall

 move $t1,$v0

Display the message “N=” and

read a number (number of lines).

 li $t3,1

Initialize the line counter

again:

Figure 2.10 Flow chart

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

114 CHAPTER 3

$t1 = 02 88 FA 22

$t2 = 00 29 AD 66

The registers content within the memory will has the following form (figure

3.3):

Address Content

Deviation

from the

address
arrayA

Register

arrayA 02 +0

$t1
 88 +1

 FA +2

 22 +3

 00 +4

$t2
 29 +5

 AD +6

 66 +7

 ... +8

 ... +9

Figure 3.3 Registers storage in memory

From figure 3.3 it is obvious that every storage of a new register starts always

with a deviation of four memory locations. At Assembly level, the above

storage (for two registers) is achieved with the following instructions:

sw $t1,arrayA(0)

sw $t2,arrayA(4)

The instruction sw $t1,arrayA(0) stores a word (word = 32bit) which is

extracted from the register $t1 starting from the address that is resulted from

the addition arrayA+0. The label arrayA corresponds in a real address

which represents the beginning of the memory area (array). Moreover, the

instruction sw $t2,arrayA(4)stores the content of the register $t2

starting from the address arrayA+4. The next register storage starts from the

address arrayA+8 and so on.

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

Lab exercises 215

Step 13
Modify the program of step 10 for displaying a help message during the filling

of the array. This message will be displayed for every number that is entered

by the user. For example, the help message for the two first numbers will be:

Α[0]=

Α[1]=

Exercise 9
Array management (Α)

Step 1
Write the needed code for calculating the square of a positive number. Assume

that the number is stored in $t1.

Step 2
Develop a program for calculating the square of positive numbers of an array.

The resulted square will be store in the same array location. The above

operation can be described as follows:

A=array[i]

B=A*A

array[i]=B

Step 3
Write a program for calculating and displaying the summation of the numbers

that are stored in an array.

Step 4
Write the code for checking a number if it is odd or even.

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

5

Selected MIPS Assembly

Instructions

Content-Goals

In this chapter, the basic MIPS Assembly instructions will be presented as

well as instruction lists with the corresponding description.

Instructions and functions of the MIPS Assembly

add

Operation

 Add the content of two registers or add a register with an integer value

Expression

 add r1,r2,ri

 r1,r2 = register (register name)

 ri = register (register name) or integer value

Description

r1 = r2 + ri

Example

 #Adding registers
 add $t0,$t1,$t2 #$t0=$t1+$t2

 #Adding a register and an integer value
 add $t0,$t1,4 #$t0=$t1+4

 #Implementing the addition $t0=$t1+$t2+$t3
 add $t0,$t1,$t2

 add $t0,$t0,$t3

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

248 Appendix

Step 2 Enter the source code

Enter the source code within the text editor

Step 3 Create source file

Save the source code in a file with the extension .s.

Sam
ple

 pa
ge

s

P. P
ap

az
og

lou

